If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100y^2-144=0
a = 100; b = 0; c = -144;
Δ = b2-4ac
Δ = 02-4·100·(-144)
Δ = 57600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{57600}=240$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-240}{2*100}=\frac{-240}{200} =-1+1/5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+240}{2*100}=\frac{240}{200} =1+1/5 $
| 2x+3(4x)=140 | | 7(7-30)=-u-11 | | 15x+20=-6+8x | | 15x+20=-6+8 | | X=34x+20 | | 1-15/x=-50/x^2 | | j+(3j-2)=34 | | p-25=-31 | | 1-15/z=-50/z^2 | | (2x)3+(3x)3+(4x)3=54 | | 3=c+7-12 | | 2x+3x+4x=54 | | 0.3x(12x-16)=0.4(12-3x) | | 5x²-7x+8=6x5 | | 4v+16=132-7v+6 | | 1/5×x=14 | | x-6/4=x+8/3 | | 4v+16=132-7v | | 5x-4x-16=20 | | 2x+12/3=x-5 | | -16-4x=1 | | 1/2x+1/4x=8 | | 10t^2+25t-90=0 | | 40=10(x-4) | | 5+x*(-7)=19 | | (x/9)+(x/8)+(x/6)=1 | | y^2-2y+81=0 | | 5=(x)^2.3 | | 8(y)=96 | | 4(4+7)=9(x-1)+22 | | x-22/x=0.20 | | 8x(x)=96 |